Formation of inverse Chladni patterns in liquids at microscale: roles of acoustic radiation and streaming-induced drag forces
نویسنده
چکیده
While Chladni patterns in air over vibrating plates at macroscale have been well studied, inverse Chladni patterns in water at microscale have recently been reported. The underlying physics for the focusing of microparticles on the vibrating interface, however, is still unclear. In this paper, we present a quantitative threedimensional study on the acoustophoretic motion of microparticles on a clamped vibrating circular plate in contact with water with emphasis on the roles of acoustic radiation and streaming-induced drag forces. The numerical simulations show good comparisons with experimental observations and basic theory. While we provide clear demonstrations of three-dimensional particle size-dependent microparticle trajectories in vibrating plate systems, we show that acoustic radiation forces are crucial for the formation of inverse Chladni patterns in liquids on both out-of-plane and in-plane microparticle movements. For out-of-plane microparticle acoustophoresis, out-of-plane acoustic radiation forces are the main driving force in the near-field, which prevent out-of-plane acoustic streaming vortices from dragging particles away from the vibrating interface. For in-plane acoustophoresis on the vibrating interface, acoustic streaming is not the only mechanism that carries microparticles to the vibrating antinodes forming inverse Chladni patterns: in-plane acoustic radiation forces could have a greater contribution. To facilitate the design of lab-on-a-chip devices for a wide range of applications, the effects of many key parameters, including the plate radius R and thickness h and the fluid viscosity μ, on the microparticle acoustophoresis are discussed, which show that the threshold in-plane and outof-plane particle sizes balanced from the acoustic radiation and streaming-induced drag forces scale linearly with R and √μ, but inversely with √h.
منابع مشابه
Manipulating Standard and Inverse Chladni Patterns by Modulating Adhesive, Frictional, and Damping Forces
Particles on a plate form Chladni patterns when the plate is acoustically excited. To better understand these patterns and their possible real-world applications, I present a new analytical and numerical study of the transition between standard and inverse Chladni patterns on an adhesive surface at any magnitude of acceleration. By spatial autocorrelation analysis, I examine the effects of surf...
متن کاملA numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numeric...
متن کاملDynamics analysis of microparticles in inertial microfluidics for biomedical applications
Inertial microfluidics-based devices have recently attracted much interest and attention due to their simple structure, high throughput, fast processing and low cost. They have been utilised in a wide range of applications in microtechnology, especially for sorting and separating microparticles. This novel class of microfluidics-based devices works based on intrinsic forces, which cause micropa...
متن کاملTheoretical aspects of microscale acoustofluidics
In this contribution, I summarize some of the recent results within theory and simulation of microscale acoustofluidic systems that I have obtained in collaboration with my students and international colleagues. The main emphasis is on three dynamical effects induced by external ultrasound fields acting on aqueous solutions and particle suspensions: The acoustic radiation force acting on suspen...
متن کاملA simple and novel method for acoustic streaming power measurement of ultrasonic horn
Ultrasonic horn with transfer of acoustic wave into an aqueous solution results in unique properties. When, transfer of sound wave into a liquid results in liquid movement in the direction of wave propagation which gradually loses its energy due to the viscous friction. This wave motion induces a flow which is known as acoustic streaming or micro-streaming. In this article, a simple innovative ...
متن کامل